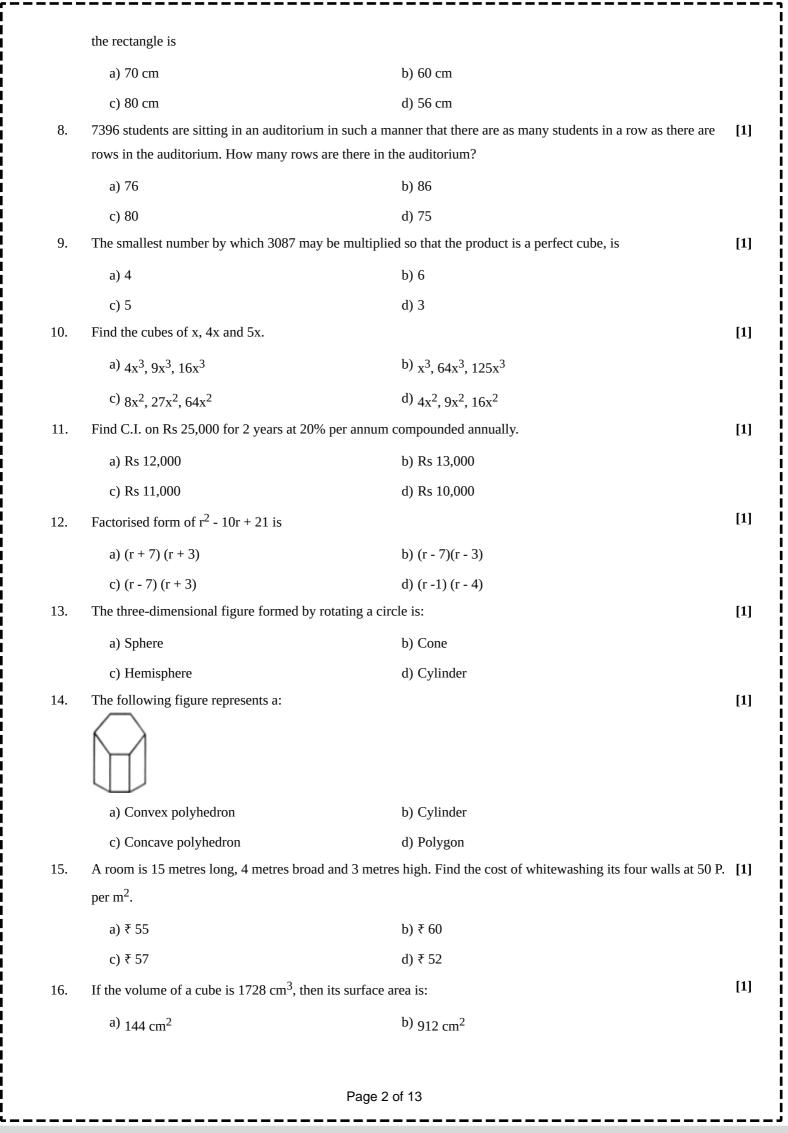
# Class VIII Session 2024-25 **Subject - Mathematics** Sample Question Paper - 1

Time Allowed: 3 hours **Maximum Marks: 80** 

### **General Instructions:**


- 1. This Question Paper has 4 Sections A-D.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 6 questions carrying 02 marks each.
- 4. Section C has 8 questions carrying 03 marks each.
- 5. Section D has 6 questions carrying 04 marks each.
- 6. All Questions are compulsory.
- 7. Draw neat figures wherever required. Take  $\pi$  =22/7 wherever required if not stated.
- 1. Which of the following properties of rational numbers is shown below?

$$\frac{3}{4} \times \left(\frac{7}{3} \times \frac{-4}{5}\right) = \left(\frac{3}{4} \times \frac{7}{3}\right) \times \frac{-4}{5}$$

a) closure property

- a) Distributivity of addition over multiplication b) Commutativity of addition
- c) Distributivity of multiplication over addition d) Associativity of multiplication
- 2. The property represented by  $a \times (b + c) = a \times b + a \times c$  is [1]
  - - b) distributive property
    - c) associative property d) commutative property
- If  $\frac{5x}{3}-4=\frac{2x}{5}$  , then the numerical value of 2x 7 is 3. [1]
- - b)  $\frac{13}{19}$ a)  $\frac{19}{13}$
  - c)  $-\frac{13}{19}$ d) 0
- Solve: 5t 3 = 3t 54. [1]
- a) 0 b) 2
- d) -1
- 5. For which of the following figures, diagonals are perpendicular to each other? [1]
  - a) Trapezium b) Kite
    - c) Parallelogram d) Rectangle
- 6. State the name of a regular polygon of 9 sides. [1]
- a) heptagon b) octagon
  - d) Hexagon c) nonagon
- 7. The length and breadth of a rectangle are in the ratio 4:3. If the diagonal measures 25 cm then the perimeter of [1]

Page 1 of 13



c) 864 cm<sup>2</sup>

d) 288 cm<sup>2</sup>

17. The value of  $\left(\frac{2}{5}\right)^{-2}$  is

[1]

a)  $\frac{4}{25}$ 

b)  $\frac{5}{2}$ 

c)  $\frac{4}{5}$ 

- d)  $\frac{25}{4}$
- 18. If  $3^{x+8} = 27^{2x+1}$  then the value of x will be:

[1]

a) 1

b) -2

c) 7

d) 3

19. Simplify:  $(-3)^2 \times \left(\frac{5}{3}\right)^2$ 

[1]

a) 4

b) 27

c) 25

d) 8

20.  $9m^2 + 12mn + 4n^2$  is same as

[1]

a)  $(3m + 2n)^2$ 

b)  $(3m - 2n)^2$ 

c) (3m - 2n)

- d) (3m + 2n)
- 21. Using suitable rearrangement find the sum:  $-5 + \frac{7}{10} + \frac{3}{7} + (-3) + \frac{5}{14} + \frac{-4}{5}$


[2] [2]

22. Solve the equation and check your result: 5x + 9 = 5 + 3x

- s **[2]**
- 23. A bag has 4 red balls and 2 yellow balls. (The balls are identical in all respects other than colour). A ball is drawn from the bag without looking into the bag. What is probability of getting a red ball? Is it more or less than getting a yellow ball?

OR

A survey was carried out to find the favourite beverage preferred by a certain group of young people. The following pie chart shows the findings of this survey.



From this pie chart, answer the following:

- i. Which type of beverage is liked by the maximum number of people?
- ii. If 45 people like tea, how many people were surveyed?
- 24. The dimensions of a rectangular field are 80 m and 18 m. Find the length of its diagonal. [2]
- 25. For the given solid draw the side view and front view?

[2]

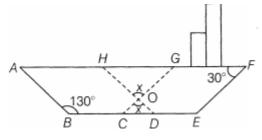


26. Find the value of x, so that  $(-2)^3 \times (-2)^{-6} = (-2)^{2x-1}$ 

[2]

OR

Simplify and write in exponential form : $(-2)^{-3} \times (-2)^{-4}$ 


27. Solve: 
$$5x + \frac{7}{2} = \frac{2}{2}x - 14$$

[3]

28. In the following figure of a ship, ABDH and CEFG are two parallelograms. Find the value of x.

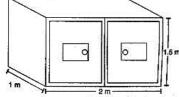
[3]

[3]



OR

ABCD is a parallelogram. The bisector of angle A intersects CD at X and bisector of angle C intersects AB at Y. Is AXCY a parallelogram? Give reason.


- 29. 2025 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.
- 30. Is 1188 a perfect cube? If not, by which smallest natural number should 1188 be divided so that the quotient is a perfect cube?
- 31. The price of a TV is ₹13000. The sales tax charged on it is at the rate of 12%. Find the amount that Vinod will have to pay if he buys it.

OR

The marked price of a DVD is ₹4500. A shopkeeper allows two successive discounts of 10% and 5% by the force of a customer. Find the selling price of the customer after two discounts are given.

32. Add 
$$p^3 - 1$$
,  $p^3 + p + 2$  and  $p^2 - 2p + 1$ .

33. Rukhsar painted the outside of the cabinet of measure  $1 \text{ m} \times 2 \text{ m} \times 1.5 \text{ m}$ . How much surface area did she cover if she painted all except the bottom of the cabinet.

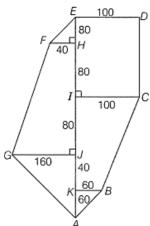


- 34. Factorise:  $(1 + m)^2 (1 m)^2$
- 35. Draw a pie chart showing the following information. The table shows the colours preferred by a group of people. [4]

| Colours | Number of people |
|---------|------------------|
| Blue    | 18               |
| Green   | 9                |
| Red     | 6                |
| Yellow  | 3                |
| Total   | 36               |

Find the proportion of each sector. For example, Blue is  $\frac{18}{36} = \frac{1}{2}$ ; Green is  $\frac{9}{36} = \frac{1}{4}$  and so on. Use this to find the corresponding angle.

36. A sum of money becomes ₹ 17,640 in 2 years and ₹ 18,522 in 3 years at the same rate of interest compounded annually. Find the rate of interest.




Find the product of  $\left(\frac{1}{2}p^3q^6\right)\left(\frac{-2}{3}p^4q\right)(pq^2)$ 37.

[4]

[4]

38. Find the area of the following fields. All dimensions are in metres.

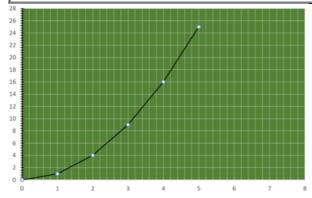


OR

The dimensions of a cuboid are in the ratio of 2:3:4 and its total surface area is 208m<sup>2</sup>. Find its dimensions.

39. Factorize 
$$6x^2 - 13x + 6$$

[4]


OR

Factorise the expression and divide them as directed:  $(5p^2 - 25p + 20) \div (p - 1)$ 

40. Consider the relation between the area and the side of a square given by  $A = x^2$ . [4]

- a. Draw a graph to show this relation.
- b. From the graph, find the value of A when x = 4.
- c. Is this graph a linear graph?

| Side of square (x) | 0 | 1 | 2 | 3 | 4  | 5  |
|--------------------|---|---|---|---|----|----|
| Area of square (A) | 0 | 1 | 4 | 9 | 16 | 25 |



# **Solution**

1.

(d) Associativity of multiplication

**Explanation:** Associativity of multiplication

2.

(b) distributive property

**Explanation:** Distributive property

3.

(c) 
$$-\frac{13}{19}$$

**Explanation:** 
$$\frac{5x}{3} - 4 = \frac{2x}{5}$$

$$\frac{5x}{3} - \frac{2x}{5} = 4$$

$$\frac{25x - 6x}{15} = 4$$

$$\frac{15}{15} = 4$$

$$19x = 15 \times 4$$

hence,

$$=2 \times \frac{60}{19} - 7$$

$$=\frac{120}{19}-7$$

$$=-\frac{13}{19}$$

4.

(d) -1

**Explanation:** 5t-3=3t-5

by transposing both sides

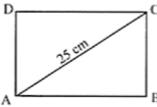
$$5t - 3t = -5 + 3$$

$$2t = -2$$

$$t = -2/2$$

$$t = -1$$

5.


**Explanation:** The diagonals of a kite are perpendicular to each other.

6.

**Explanation:** A nonagon is a plane figure with nine straight sides and nine angles.

(a) 70 cm

**Explanation:** Let ABCD be the rectangle.



Let AC be the diagonal, where AC = 25 cm.

Length and breadth of a rectangle are in the ratio 4:3

Length of rectangle = 4x and Breadth of rectangle = 3x

By Pythagoras theorem, we have  $AB^2 + BC^2 = AC^2$ 

$$\Rightarrow (4x)^2 + (3x)^2 = (25)^2$$

$$\Rightarrow 16x^2 + 9x^2 = 625$$

$$\Rightarrow 25x^2 = 625$$

$$\Rightarrow$$
 x<sup>2</sup> = 25  $\Rightarrow$  x =  $\pm$ 5

Since the side of the rectangle cannot be negative, so x = -5 is neglected  $\therefore x = -5$ 

So, length of the rectangle =  $4x = 4 \times 5 = 20$  cm Breadth of the rectangle =  $3x = 3 \times 5 = 15$  cm

So, perimeter of the rectangle = 2(1 + b)

$$= 2(20 + 15) = 2(35) = 70 \text{ cm}$$

8.

#### **(b)** 86

**Explanation:** Let number of students sitting in a row = 'x'

- ... Number of rows in auditorium = 'x'
- ... Number of students sitting in auditorium

$$= x \times x = x^2$$

Now  $x^2 = 7396$ 

$$\therefore x = \sqrt{7396}$$

| 86          |                    |  |  |
|-------------|--------------------|--|--|
| 8           | 73 96              |  |  |
|             | 64                 |  |  |
| 16 <u>6</u> | 09 96<br>9 96      |  |  |
|             | 9 96               |  |  |
|             | 0 00               |  |  |
| ·. x =      | $\sqrt{7396} = 86$ |  |  |

Number of rows in auditorium = 86

9.

**(d)** 3

**Explanation:** Writing 3087 as a product of a prime factors, we have

$$\therefore 3087 = 3 \times 3 \times \underline{7} \times \underline{7} \times \underline{7}$$

Clearly, to make it a perfect cube it must be multiplied by 3.

10.

**(b)** 
$$x^3$$
,  $64x^3$ ,  $125x^3$ 

**Explanation:** The cubes of  $x = x \times x \times x = x^3$ 

$$4x = 4x \times 4x \times 4x = 64x^3$$

$$5x = 5x \times 5x \times 5x = 125x^3$$

11.

## (c) Rs 11,000

**Explanation:** C.I. 
$$=P(1+\frac{r}{100})^n - P$$

$$= 25,000(1 + \frac{20}{100})^2 - 25,000$$
$$= 25,000(\frac{6}{5})^2 - 25,000$$

$$=25,000(\frac{6}{5})^2-25,000$$

- = 36,000 25,000
- = Rs 11,000

12.

Page 7 of 13

**Explanation:** We have,  $r^2 - 10r + 21$ 

 $= r^2 - 7r - 3r + 21 = r(r - 7) - 3(r - 7)$  [by splitting the middle term, so that the product of their numerical coefficients is equal constant term ]

= 
$$(r - 7)(r - 3)$$
 [:  $x^2 + (a + b)x + ab = (x + a)(x + b)$ ]

13. **(a)** Sphere

**Explanation:** Sphere

14. **(a)** Convex polyhedron

Explanation: Convex polyhedron, as it is bounded by plane polygonal faces.

15.

**(c)** ₹ 57

**Explanation:** Area of 4 walls =  $2(l \times b] \times h$ 

$$= 2 \times [15 + 4] \times 3 = 114$$
m<sup>2</sup>

Cost of painting at the rate of 50 paisa per m<sup>2</sup>

$$=\frac{1}{2}\times 114=$$
 ₹7

16.

(c)  $864 \text{ cm}^2$ 

**Explanation:** Let the side of the cube be a cm

$$a^3 = 1728$$

$$a = \sqrt[3]{1728}$$

$$a = 12 \text{ cm}$$

Surface area of the cube =  $6a^2$ 

$$= 6 \times 12^2$$

$$= 6 \times 144$$

$$=6\times144$$

$$= 864 \text{ cm}^2$$

17.

(d) 
$$\frac{25}{4}$$

**Explanation:** Using law of exponents,  $a^{-m} = \frac{1}{a^m} [\because a \text{ is non-zero integer}]$ 

$$\therefore \quad \left(\frac{2}{5}\right)^{-2} = \frac{1}{\left(\frac{2}{5}\right)^2} = \frac{1}{\frac{4}{25}} = \frac{25}{4}$$

18. **(a)** 1

**Explanation:**  $3^{(x+8)} = 3(2x + 1)$ 

$$3^{x+8} = 3^{6x+3}$$

$$x + 8 = 6x + 3$$

$$5x = 5$$

$$x = \frac{1}{5}$$
$$x = 1$$

19.

**(c)** 25

**Explanation:** = 
$$(-3)^2 \times \left(\frac{5}{3}\right)^2$$

$$=(9)\times\left(\frac{5^2}{3^2}\right)$$

$$=9\times\frac{25}{3}$$

20. **(a)** 
$$(3m + 2n)^2$$

**Explanation:**  $9m^2 + 12mn + 4n^2$ 



$$= (3m)^2 + 2(3m)(2n) + (2n)^2$$
$$= (3m + 2n)^2$$

21. We have, 
$$-5 + \frac{7}{10} + \frac{3}{7} + (-3) + \frac{5}{14} + \left(\frac{-4}{5}\right)$$
  
=  $-5 + (-3) + \frac{7}{10} + \left(\frac{-4}{5}\right) + \frac{3}{7} + \frac{5}{14}$   
=  $-8 + \frac{7-8}{10} + \frac{6+5}{14} = -8 - \frac{1}{10} + \frac{11}{14}$   
=  $\frac{-560-7+55}{70}$   
=  $\frac{-512}{10} = \frac{-256}{10}$ 

$$22.5x + 9 = 5 + 3x$$

5x - 3x = 5 - 9 ... [Transposing 3x to L.H.S. and 9 to R.H.S]

$$\therefore 2x = -4$$

$$\therefore$$
 x =  $-\frac{4}{2}$  ... [Dividing both sides by 2]

$$\therefore$$
 x = -2 this is the required solution.

Verification

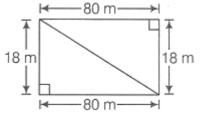
L.H.S. = 
$$5(-2) + 9 = -10 + 9 = -1$$

R.H.S. = 
$$5 + 3(-2) = 5 - 6 = -1$$

Therefore, L.H.S = R.H.S

23. There are in all (4 + 2 =) 6 outcomes of the event.

Getting a red ball consists of 4 outcomes.


Therefore, the probability of getting a red ball is  $\frac{4}{6} = \frac{2}{3}$ .

In the same way the probability of getting a yellow ball =  $\frac{2}{3} = \frac{1}{3}$ .

Therefore, the probability of getting a red ball is more than that of getting a yellow ball.

OR

- i. The percentage of people preferring cold drinks is maximum. So, cold drinks is liked by the maximum number of people.
- ii. From the pie chart, number of people who like tea = 45
  - $\Rightarrow$  15% of total number of people surveyed = 45
  - $\Rightarrow \frac{15}{100} \times \text{Total number of people surveyed} = 45$
  - ∴ Total number of people surveyed =  $\frac{45 \times 100}{15}$  = 300
- 24. Here, length of a rectangular field (l) = 80 m and breadth of a rectangular field (b) = 18 m



$$\therefore$$
 Length of diagonal =  $\sqrt{l^2 + b^2}$ 

$$=\sqrt{(80)^2+(18)^2}$$

$$=\sqrt{6400+324}$$

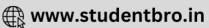
$$=\sqrt{6724}$$
 = 82 m

| 25. | Object | Front View | Side View |
|-----|--------|------------|-----------|
|     |        |            |           |

26. We have, 
$$(-2)^3 \times (-2)^{-6} = (-2)^{2x-1}$$

Using law of exponents,  $a^m a^n = (a)^{m+n} [\because a \text{ is non-zero integer}]$ 

Then, 
$$(-2)^3 \times (-2)^{-6} = (-2)^{2x-1}$$


$$\Rightarrow$$
 (-2)<sup>3-6</sup> = (-2)<sup>2x -1</sup>

$$\Rightarrow$$
 (-2)<sup>-3</sup> = (-2)<sup>2x -1</sup>

Page 9 of 13







On comparing both sides, we get -3 = 2x - 1

$$\Rightarrow$$
 2x = -2  $\Rightarrow$  x = -1

OR

$$(-2)^{-3} \times (-2)^{-4}$$
  
=  $(-2)^{(-3) + (-4)}$ 

$$=(-2)^{-7}$$

$$27.5x + \frac{7}{2} = \frac{3}{2}x - 14$$

Multiplying both sides of the equation by 2, we get

$$2 imes \left(5x+rac{7}{2}
ight)=2 imes \left(rac{3}{2}x-14
ight)$$

$$(2 imes 5x)+\left(2 imesrac{7}{2}
ight)=\left(2 imesrac{3}{2}x
ight)-(2 imes 14)$$

$$10x + 7 = 3x - 28$$

$$10x - 3x = -28 - 7$$

$$7x = -35$$

$$x = \frac{-35}{7}$$

$$x = -5$$

28. We have, two parallelograms ABDH and CEFG.

Now, in ABDH,

$$\therefore$$
  $\angle$ ABD =  $\angle$ AHD = 130° [ $\because$  opposite angles of a parallelogram are equal]

and 
$$\angle$$
GHD = 180° -  $\angle$ AHD = 180° - 130° [linear pair]

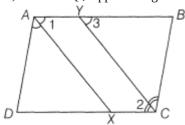
$$\Rightarrow$$
 50° =  $\angle$ GHO

Also,  $\angle$ EFG +  $\angle$ FGC = 180° [: adjacent angles of a parallelogram are supplementary]

$$\Rightarrow$$
 30° +  $\angle$ FGC= 180°  $\Rightarrow$   $\angle$ FGC = 180°- 30° = 150°

and 
$$\angle$$
HGC +  $\angle$ FGC = 180° [linear pair]

$$\therefore$$
  $\angle$ HGC = 180° -  $\angle$ FGC = 180° - 150° = 30° =  $\angle$ HGO


In  $\Delta$ HGO, by using angle sum property,  $\angle$ OHG + $\angle$ HGO +  $\angle$ HOG = 180°

$$\Rightarrow$$
50° + 30° + x = 180°  $\Rightarrow$  x = 180° - 80° =100°

OR

Given, ABCD is a parallelogram.

So,  $\angle A = \angle C$  [: opposite angles of a parallelogram are equal]



$$\therefore \frac{\angle A}{2} = \frac{\angle C}{2}$$
 [dividing both the sides by 2]

$$\angle 1 = \angle 2$$
 [alternate angles]

But 
$$\angle 2 = \angle 3$$
 [: AB || CD and CY is the transversal]

But they are pair of corresponding angles.

AXCY s a parallelogram.

#### 29. Let the number of rows be x.

Then number of plants in each row = x

$$\therefore$$
 Number of plants in x rows =  $x \times x = x^2$ 

But 2025 plants are to be planted in a garden.

$$x^2 = 2025$$

$$\therefore x = \sqrt{2025}$$

The prime factorisation of 2025 is

Page 10 of 13



$$2025 = 3 \times 3 \times 3 \times 3 \times 5 \times 5$$

$$\therefore x = \sqrt{3 \times 3 \times 3 \times 3 \times 5 \times 5}$$

$$\therefore x = 3 \times 3 \times 5$$

Hence, the number of rows is 45 and the number of plants in each row is 45.

30. 
$$1188 = 2 \times 2 \times 3 \times 3 \times 3 \times 11$$

The primes 2 and 11 do not appear in groups of three. So, 1188 is not a perfect cube.

In the factorisation of 1188, the prime 2 appears only two times and the prime 11 appears once. So, if we divide 1188 by  $2 \times 2 \times 11 = 44$ , then the prime factorisation of the quotient will not contain 2 and 11.

Hence the smallest natural number by which 1188 should be divided to make it a perfect cube is 44.

And the resulting perfect cube is  $1188 \div 44 = 27 = 3^3$ 

### 31. Price of TV = ₹ 13000

Sales tax charged on it = 12% of ₹ 13000

$$= \overline{\epsilon}_{100}^{\ \underline{12}} \times 13000$$

Hence, the amount that Vinod will have to pay if he buys it is ₹ 14560.

OR

$$= \frac{10}{100} \times 4500 = ₹450$$

Price after first discount = ₹ 4500 - ₹ 450= ₹ 4050

Second discount = 5% of reduced price

$$= \frac{5}{100} \times Rs.4050 = \frac{20250}{100} = ₹202.50$$

Net selling price of the DVD = ₹ 4050 - ₹ 202.50 = ₹3847.50.

$$33.1 = 2 \text{ m}$$

$$b = 1 m$$

$$h = 1.5 \text{ m}$$

Required area

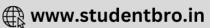
$$= 2 (1 \times b + b \times h + h \times l) - 1 \times b$$

= 
$$2(2 \times 1 + 1 \times 1.5 + 1.5 \times 2) \text{ m}^2 - (2 \times 1) \text{ m}^2$$

$$= 13 \text{ m}^2 - 2 \text{ m}^2$$

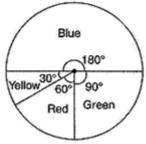
$$= 11 \text{ m}^2$$

Hence, she covered 11 m<sup>2</sup> of surface area.


34. 
$$(1 + m)^2 - (1 - m)^2$$

= 
$$\{(l + m) - (l - m)\}$$
  $\{(l + m) + (l - m)\}$  .... [Applying Identity III]

$$=(2m)(2l)$$


= 4lm

| 35. Colours Number of people Proportion Corresponding angle |  |
|-------------------------------------------------------------|--|
|-------------------------------------------------------------|--|



| Blue   | 18 | $\frac{18}{36} = \frac{1}{2}$ | $rac{1}{2}	imes360^\circ=180$   |
|--------|----|-------------------------------|----------------------------------|
| Green  | 9  | $\frac{9}{36} = \frac{1}{4}$  | $rac{1}{4}	imes 360^\circ = 90$ |
| Red    | 6  | $\frac{6}{36} = \frac{1}{6}$  | $rac{1}{6}	imes 360^\circ=60$   |
| Yellow | 3  | $\frac{3}{36} = \frac{1}{12}$ | $rac{1}{12}	imes360^\circ=30$   |
| Total  | 36 |                               |                                  |

### Pie chart



36. Let Principal = P

Rate of Interest = R

Amount<sub>1</sub> (A<sub>1</sub>) = ₹ 17,640

Time Period1  $(T_1) = 2$  years

$$A_1 = P\Big(1 + rac{R}{100}\Big)^{T_1}$$

$$17,640 = P\Big(1 + \frac{R}{100}\Big)^2$$

Amount<sub>2</sub> (A<sub>2</sub>) = ₹ 18,522

Time  $Period_2(T_2) = 3$  years

$$A_2=P\Big(1+rac{R}{100}\Big)^{T_2}$$

$$18,522 = P\Big(1 + rac{R}{100}\Big)^3$$

$$\frac{A_1}{A_2} = \frac{18,522}{17,640} = \frac{P(1 + \frac{R}{100})^3}{P(1 + \frac{R}{100})^2}$$

$$\frac{21}{20} = \frac{\left(1 + \frac{R}{100}\right)^3}{\left(1 + \frac{R}{100}\right)^2} = 1 + \frac{R}{100}$$

$$\frac{21}{20} - 1 = \frac{R}{100}$$

$$\frac{\frac{21}{20} - 1 = \frac{100}{100}}{R = \frac{21 - 20}{20} \times 100 = \frac{1}{20} \times 100 = 5\%$$

37. 
$$\left(\frac{1}{2}p^3q^6\right)\left(\frac{-2}{3}p^4q\right)(pq^2)$$

$$71 - \frac{1}{20} \times 100 - \frac{1}{20} \times 100 - \frac{1}{20} \times 100 - \frac{1}{20} \times 100 - \frac{1}{20} \times \frac{$$

Area of the given figure = Area of  $\Delta$ EFH + Area of rectangle EDCI + Area of trapezium FHJG + Area of trapezium ICBK + Area of  $\Delta$ GJA + Area of  $\Delta$ KBA

Now, Area of  $\Delta EFH = \frac{1}{2} \times \text{Base} \times \text{Height}$ 

$$= \frac{1}{2} \times 40 \times 80$$

$$=1600\mathrm{m}^2$$

Area of rectangle EDCI = Length  $\times$  Breadth = 100  $\times$  160

Area of trapezium, FHJG =  $\frac{1}{2}$  × [Sum of parallel sides] × Height

$$=\frac{1}{2} imes [40+160] imes 160$$

$$=\frac{\frac{2}{200}}{2}\times160$$

$$= 100 \times 160$$

Page 12 of 13



$$= 16000 \text{m}^2$$

Area of trapezium, ICBK =  $\frac{1}{2}$  × [Sum of parallel sides] × Height

$$=\frac{1}{2} \times [60+100] \times 120$$

$$=rac{1}{2} imes 160 imes 120$$

$$=80 \times 120$$

$$=9600\mathrm{m}^2$$

Area of  $\Delta AJG = \frac{1}{2} \times Base \times Height$ 

$$= \frac{1}{2} \times 160 \times 100$$

$$= 80 \times 100$$

$$= 8000 \text{ m}^2$$

Area of 
$$\Delta KBA = \frac{1}{2} \times \text{Base} \times \text{Height}$$

$$=\frac{1}{2}\times60\times60$$

 $= 1800 \text{m}^2$ 

Therefore, the area of the complete figure = 1600 + 16000 + 16000 + 9600 + 8000 + 1800

$$= 53000 \text{ m}^2$$

OR

Let the dimensions be 2x, 3x and 4x in metres.

Total surface area = 
$$208 \text{ m}^2$$

$$2[(2x)(3x) + (3x)(4x) + (4x)(2x)] = 208$$

$$2[6x^2 + 12x^2 + 8x^2] = 208$$

$$2[26x^2] = 208$$

$$52x^2 = 208$$

$$x^2 = \frac{208}{52}$$

$$x^2 = 4m$$

$$x = \sqrt{4m}$$

$$x = 2m$$

Length 
$$=2x = 2(2m) = 4m$$

Breadth 
$$=3x = 3(2m) = 6m$$

Height 
$$=4x = 4(2m) = 8m$$

39. The given expression is  $6x^2 - 13x + 6$ 

Here coefficient of  $x^2 = 6$ , coefficient of x = -13 and constant term = 6

So we write the middle term -13x as -4x, -9x

Thus we have,

$$6x^2 - 13x + 6 = 6x^2 - 4x - 9x + 6$$

$$= 2x(3x-2) - 3(3x-2)$$

$$=(3x-2)(2x-3)$$

OR

$$(5p^{2} - 25p + 20) \div (p - 1)$$

$$= \frac{5(p^{2} - 5p + 4)}{p - 1}$$

$$= \frac{5(p^{2} - p - 4p + 4)}{p - 1} \dots \text{ [Applying Identity IV]}$$

$$= \frac{5\{p(p - 1) - 4(p - 1)\}}{p - 1}$$

$$=\frac{p-1}{5(p-1)(p-4)}$$

$$=\frac{5(p-1)(p-4)}{n-1}$$

$$= 5 (p-4)$$

- 40. a. The graph is drawn.
  - b. From the graph it is clear that area when x = 4 is 16.
  - c. This graph is not a linear graph.

Page 13 of 13